Matemáticas (Aritmética, Algebra,Geometría,Geometría Analítica)
lunes, 18 de octubre de 2010
jueves, 16 de septiembre de 2010
La División:
La división es:
una operación aritmética de descomposición que consiste en averiguar cuántas veces un número (el divisor) está contenido en otro número (el dividendo). La división es una operación matemática, específicamente, de aritmética elemental, inversa de la multiplicación y puede considerarse también como una resta repetida.
Según su resto, las divisiones se clasifican como exactas si su resto es cero ó inexactas cuando no lo es.
Al resultado entero de la división se denomina cociente y si la división no es exacta, es decir, el divisor no está contenido un número exacto de veces en el dividendo, la operación tendrá un resto.
una operación aritmética de descomposición que consiste en averiguar cuántas veces un número (el divisor) está contenido en otro número (el dividendo). La división es una operación matemática, específicamente, de aritmética elemental, inversa de la multiplicación y puede considerarse también como una resta repetida.
Según su resto, las divisiones se clasifican como exactas si su resto es cero ó inexactas cuando no lo es.
Al resultado entero de la división se denomina cociente y si la división no es exacta, es decir, el divisor no está contenido un número exacto de veces en el dividendo, la operación tendrá un resto.
Division de Exponentes:
Los exponentes indican cuántas veces el factor, llamada base, ocurre en la multiplicación.
1. 53 = 5 · 5 ·5 = 125
2. 24 = 2 · 2 · 2 · 2 = 16
3. (-4)2 = (-4) · (-4) = 16
Ley de los Exponentes:
viernes, 10 de septiembre de 2010
La Multiplicacion:
La multiplicación es
una operación aritmética de composición que consiste en sumar reiteradamente un mismo valor la cantidad de veces indicada por
un segundo valor. Así, 4·3 (léase «cuatro multiplicado por tres» o, simplemente, «cuatro por tres») es igual a sumar tres veces el valor 4 por sí mismo (4+4+4). La multiplicación está asociada al concepto de área geométrica.
El resultado de la multiplicación de varios números se llama producto. Los números que se multiplican se llaman factores o coeficientes, e individualmente: multiplicando (número a sumar) y multiplicador (veces que se suma el multiplicando). Aunque esta diferenciación en algunos contextos puede ser superflua cuando en el conjunto donde esté definido el producto se tiene la propiedad conmutativa de la multiplicación (por ejemplo, en los conjuntos numéricos).
Operaciones con Numeros Reales:
Diferencia de números reales
La diferencia de dos números reales se define como la suma del minuendo más el opuesto del sustraendo.
a − b = a + (−b)
Producto de números reales
La regla de los signos del producto de los números enteros y racionales se sigue manteniendo con los números reales.
Propiedades
1.Interna:
El resultado de multiplicar dos números reales es otro número real.
a · b
2.Asociativa:
El modo de agrupar los factores no varía el resultado. Si a, b y c son números reales cualesquiera, se cumple que:
(a · b) · c = a · (b · c)
(e · ) · = e · ( ·)
3.Conmutativa:
El orden de los factores no varía el producto.
a · b = b · a
Elemento neutro:
El 1 es el elemento neutro de la multiplicación, porque todo número multiplicado por él da el mismo número.
a ·1 = a
· 1 =1
La diferencia de dos números reales se define como la suma del minuendo más el opuesto del sustraendo.
a − b = a + (−b)
Producto de números reales
La regla de los signos del producto de los números enteros y racionales se sigue manteniendo con los números reales.
Propiedades
1.Interna:
El resultado de multiplicar dos números reales es otro número real.
a · b
2.Asociativa:
El modo de agrupar los factores no varía el resultado. Si a, b y c son números reales cualesquiera, se cumple que:
(a · b) · c = a · (b · c)
(e · ) · = e · ( ·)
3.Conmutativa:
El orden de los factores no varía el producto.
a · b = b · a
Elemento neutro:
El 1 es el elemento neutro de la multiplicación, porque todo número multiplicado por él da el mismo número.
a ·1 = a
· 1 =1
Algebra
Algebra:
El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las cantidades (en el caso del álgebra elemental). Junto a la geometría, el análisis matemático, la combinatoria y la teoría de números.
La palabra «álgebra» es de origen árabe, deriva del tratado escrito por el matemático persa Muhammad ibn Musa al-Jwarizmi, titulado Kitab al-yabr wa-l-muqabala (en árabe كتاب الجبر والمقابلة) (que significa "Compendio de cálculo por el método de completado y balanceado"), el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas. Etimológicamente, la palabra «álgebra» جبر (yabr) , proviene del árabe y significa "reducción".
Algebra Elemental:
El álgebra elemental es una fundamental y relativamente básica forma de álgebra enseñada a los estudiantes que se presumen tienen poco o nada de conocimiento formal de las matemáticas más allá de la aritmética. Mientras que en aritmética solo ocurren los números y sus operaciones aritméticas elementales (como +, -, ×, ÷), en álgebra también se utilizan símbolos para denotar números (como x, y, a y b). Éstos son llamados variables. Esto es útil porque:
Permite la generalización de ecuaciones aritméticas (y de inecuaciones) para ser indicadas como leyes (por ejemplo para toda y ), y es así el primer paso al estudio sistemático de las propiedades del sistema de los números reales.
Permite la referencia a números que no se conocen. En el contexto de un problema, una variable puede representar cierto valor que todavía no se conoce, pero que puede ser encontrado con la formulación y la manipulación de las ecuaciones.
Permite la exploración de relaciones matemáticas entre las cantidades (por ejemplo, “si usted vende x boletos, entonces, su beneficio será 3x - 10 dólares”).
El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las cantidades (en el caso del álgebra elemental). Junto a la geometría, el análisis matemático, la combinatoria y la teoría de números.
La palabra «álgebra» es de origen árabe, deriva del tratado escrito por el matemático persa Muhammad ibn Musa al-Jwarizmi, titulado Kitab al-yabr wa-l-muqabala (en árabe كتاب الجبر والمقابلة) (que significa "Compendio de cálculo por el método de completado y balanceado"), el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas. Etimológicamente, la palabra «álgebra» جبر (yabr) , proviene del árabe y significa "reducción".
Algebra Elemental:
El álgebra elemental es una fundamental y relativamente básica forma de álgebra enseñada a los estudiantes que se presumen tienen poco o nada de conocimiento formal de las matemáticas más allá de la aritmética. Mientras que en aritmética solo ocurren los números y sus operaciones aritméticas elementales (como +, -, ×, ÷), en álgebra también se utilizan símbolos para denotar números (como x, y, a y b). Éstos son llamados variables. Esto es útil porque:
Permite la generalización de ecuaciones aritméticas (y de inecuaciones) para ser indicadas como leyes (por ejemplo para toda y ), y es así el primer paso al estudio sistemático de las propiedades del sistema de los números reales.
Permite la referencia a números que no se conocen. En el contexto de un problema, una variable puede representar cierto valor que todavía no se conoce, pero que puede ser encontrado con la formulación y la manipulación de las ecuaciones.
Permite la exploración de relaciones matemáticas entre las cantidades (por ejemplo, “si usted vende x boletos, entonces, su beneficio será 3x - 10 dólares”).
Suscribirse a:
Entradas (Atom)